Abstract

Current biased photoresponse model of long channel field-effect transistor (FET) detectors is introduced to describe the low frequency behavior in complex circuit environment. The model is applicable in all FET working regions, including subthreshold, linear, saturated modes, includes bulk potential variations, and handles the simultaneous gate-source and drain-source detection or source-driven topologies. The model is based on the phenomenological representation that links the photoresponse to the gate transconductance over drain current ratio (gm/ID) and circuit theory. A derived method is provided to analyze the detector behavior, to characterize existing antenna coupled detectors, and to predict the photoresponse in a complex circuit. The model is validated by measurements of 180 nm gate length silicon and GaAs high electron mobility FETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.