Abstract

Quantum dot channel (QDC) and Quantum dot gate (QDG) field effect transistors (FETs) have been fabricated on crystalline Si using cladded Si and Ge quantum dots. This paper presents fabrication and modeling of quantum dot channel field effect transistors (QDC-FETs) using cladded Ge quantum dots on poly-Si thin films grown on silicon-on-insulator (SOI) substrates. HfAlO2 high-k dielectric layers are used for the gate dielectric. QDC-FETs exhibit multi-state I-V characteristics which enable two-bit processing, and reduce FET count and power dissipation. QDC-FETs using germanium quantum dots provide higher electron mobility than conventional poly-silicon FETs, and mobility values comparable to conventional FETs using single crystalline silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.