Abstract

Superconducting split-ring resonator arrays allow to overcome two main limitations affecting metallic metamaterial resonating in the terahertz (THz) range: ohmic losses and tunability of their optical response. In this work, we design and experimentally realize direct and complementary square arrays of superconducting YBa2Cu3O7 (YBCO) split-ring resonators working in the THz spectral range. The main purpose of this paper is to show how the metamaterial resonances can be tuned by temperature (T) when crossing the superconducting transition temperature Tc of YBCO. The tuning property can be quantified by describing the THz transmittance of the patterned YBCO films vs. T through a model of coupled resonators. This model allows us to estimate the THz resonances of split-ring arrays and their interaction, showing how the kinetic inductance Lk in the superconducting state is the main parameter affecting the metamaterial properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.