Abstract

The spectral responsivity of the detector is important for the layout and quantitative interpretation of spectroscopic experiments. In the terahertz (THz) spectral range the knowledge of the total (integral) responsivity of a detector, as well as its spectral distribution, is often insufficient. PTB determined the spectral irradiance responsivity of two THz detectors, a pyroelectric DLATGS detector working at room temperature and a silicon-composite bolometer working at 4 K, in the wavelength range from 62 µm (4.82 THz) to 1340 µm (0.22 THz) with temperature radiation from blackbody radiators. Our approach is to use two THz cavity radiators in combination with THz bandpass filters to provide calculable spectral irradiances, according to Planck's law of radiation, at several wavelength bands in the THz spectral range. One cavity radiator is working at an adjustable fixed temperature in the range from 15 °C to 90 °C while the other cavity radiator operates at LN2 temperature. The radiation of the two cavity radiators is alternately imaged on the detector via a gold-coated chopper wheel. Hereby the background radiation is cancelled and also the necessary modulation for the lock-in detection is provided. The cavity of the high temperature radiator is coated with a dedicated paint providing high wall emissivity in the FIR and THz spectral range to ensure true blackbody behaviour of the radiator. The bottom of the low temperature radiator consists of THz absorber foam providing hereby also nearly blackbody behaviour. All individual filters and, additionally, the employed filter combinations are characterized for their transmittance in the entire wavelength range from 0.8 µm to 1700 µm to obtain a precise knowledge of the transmitted blackbody spectrum. The very reproducible results indicate that this setup allows a fast, simple and reliable determination of the spectral responsivity of THz detectors. In a next step, the uncertainty of this technique will be further evaluated and investigations will be extended to other types of detectors (e.g. LiTaO3 detectors and Golay cells).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call