Abstract
Coherent terahertz and millimeter wave radiation from laser accelerated electron bunches has been measured. The bunches were produced by tightly focusing (spot diameter ≈6 μm) a high peak power (up to 10 TW), ultra-short (⩾50 fs) laser pulse from a high repetition rate (10 Hz) laser system (0.8 μm), onto a high density (>1019 cm−3) pulsed gas jet of length ≈1.5 mm. As the electrons exit the plasma, coherent transition radiation is generated at the plasma-vacuum boundary for wavelengths long compared to the bunch length. Radiation in the 0.3–19 THz range and at 94 GHz has been measured and found to depend quadratically on the bunch charge. The measured radiated energy for two different collection angles is in good agreement with theory. Modeling indicates that optimization of this table-top source could provide more than 100 μJ/pulse. Together with intrinsic synchronization to the laser pulse, this will enable numerous applications requiring intense terahertz radiation. This radiation can also be used as a powerful tool for measuring the properties of laser accelerated bunches at the exit of the plasma accelerator. Preliminary spectral measurements indicates that bunches as short as 30–50 fs have been produced in these laser driven accelerators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.