Abstract
Coherent THz radiation was produced from relativistic electron bunches of subpicosecond duration. The electron beam was produced by strongly focused (≈ 6 μm), high peak power (up to 10 TW), ultra-short (≥50 fs) laser pulses of a 10 Hz repetition rate Ti:sapphire chirped pulse amplification (CPA) laser system via self-modulated laser wakefield acceleration (SM-LWFA) in a high density (> 10<sup>19</sup> cm<sup>-3</sup>) pulsed gas jet. As the electrons exit the plasma, coherent transition radiation is generated at the plasma-vacuum boundary for wavelengths long compared to the bunch length. Radiation yield in the 0.3 to 19 THz range and at 94 GHz has been measured and found to depend quadratically on the bunch charge. The measured total radiated energy in the THz range for two different collection angles is in good agreement with theory. Modeling indicates that optimization of this table-top source could provide more than 100 μJ/pulse. Together with intrinsic synchronization to the laser pulse, this will enable numerous applications requiring intense terahertz radiation. This radiation can also be applied as a useful tool for measuring the properties of laser accelerated bunches at the exit of the plasma accelerator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.