Abstract

The Teraherz (THz) photoresponse of a two-dimensional electron gas in the quantum Hall regime is investigated. We use a sample structure which is topologically equivalent to a Corbino geometry combined with a cross-gate technique. This quasi-Corbino geometry allows us to directly investigate the THz-induced transport between adjacent edge-states, thus avoiding bulk effects. We find a pronounced photo voltage at zero applied bias, which rapidly decreases when an external current bias is applied. The photo voltage and its dependence on the bias current can be described using the model of an illuminated photodiode, resulting from the reconstruction of the Landau bands at the sample edge. Using the sample as a detector in a Fourier transform spectrometer setup, we find a resonant response from which we extract a reduced effective cyclotron mass. The findings support a non-bolometric mechanism of the induced photo voltage and the proposed edge-channel diode model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.