Abstract
Novel randomness-induced disordered ground states in two-dimensional (2D) quantum spin systems have been attracting much interest. For quantitative analysis of such random quantum spin systems, one of the most promising numerical approaches is the tensor-network strong-disorder renormalization group (tSDRG), which was basically established for one-dimensional (1D) systems. In this paper, we propose a possible improvement of its algorithm toward 2D random spin systems, focusing on a generating process of the tree network structure of tensors, and precisely examine their performances for the random antiferromagnetic Heisenberg model not only on the 1D chain but also on the square- and triangular-lattices. On the basis of comparison with the exact numerical results up to 36 site systems, we demonstrate that accuracy of the optimal tSDRG algorithm is significantly improved even for the 2D systems in the strong-randomness regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.