Abstract
MV-algebras are the models of the time-honored equational theory of magnitudes with unit. Introduced by Chang as a counterpart of the infinite-valued sentential calculus of Łukasiewicz, they are currently investigated for their relations with AFC*-algebras, toric desingularizations, and lattice-ordered abelian groups. Using tensor products, in this paper we shall characterize multiplicatively closed MV-algebras. Generalizing work of Loomis and Sikorski, we shall investigate the relationships between σ-complete multiplicatively closed MV-algebras, and pointwise σ-complete MV-algebras of [0,1]-valued functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.