Abstract

We have developed an efficient tensor network algorithm for spin ladders, which generates ground-state wave functions for infinite-size quantum spin ladders. The algorithm is able to efficiently compute the ground-state fidelity per lattice site, a universal phase transition marker, thus offering a powerful tool to unveil quantum many-body physics underlying spin ladders. To illustrate our scheme, we consider the two-leg and three-leg Heisenberg spin ladders with staggering dimerization, the two-leg Heisenberg spin ladder with cyclic four-spin exchange, and the ferromagnetic frustrated two-leg ladder. The ground-state phase diagrams thus yielded are reliable, compared with the previous studies based on the the exact diagonalization and the density matrix renormalization group. Our results indicate that the ground-state fidelity per lattice site successfully captures quantum criticalities in spin ladders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.