Abstract

Dimerized spin-1/2 ladders exhibit a variety of phase structures, which depend on the intra-chain and inter-chain spin exchange energies as well as on the dimerization pattern of the ladder. Using the density matrix renormalization group (DMRG) algorithm, we study critical properties of the bond-alternating two-leg Heisenberg spin ladder with diagonal interaction J ×. Two types of spin systems, staggered dimerized antiferromagnetic ladder and columnar dimerized ferro-antiferromagnetic couplings ladder, are investigated. To clarify the phase transition behaviors, we simultaneously analyze the string order parameter (SOP), the twisted order parameter (TOP), as well as a measurement of the quantum information analysis. Based on measuring this different observables, we establish the phase diagram accurately and give the fitting functions of the phase boundaries. In addition, the phase transition of cross-coupled spin ladder (in the absence of intrinsic dimerization) is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.