Abstract
Tensor networks provide extremely powerful tools for the study of complex classical and quantum many-body problems. Over the past two decades, the increment in the number of techniques and applications has been relentless, and especially the last ten years have seen an explosion of new ideas and results that may be overwhelming for the newcomer. This short review introduces the basic ideas, the best established methods, and some of the most significant algorithmic developments that are expanding the boundaries of the tensor network potential. The goal of this review is to help the reader not only appreciate the many possibilities offered by tensor networks but also find their way through state-of-the-art codes, their applicability, and some avenues of ongoing progress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.