Abstract

Double-pulsed diffusional kurtosis imaging (DP-DKI) represents the double diffusion encoding (DDE) MRI signal in terms of six-dimensional (6D) diffusion and kurtosis tensors. Here a method for estimating these tensors from experimental data is described. A standard numerical algorithm for tensor estimation from conventional (i.e. single diffusion encoding) diffusional kurtosis imaging (DKI) data is generalized to DP-DKI. This algorithm is based on a weighted least squares (WLS) fit of the signal model to the data combined with constraints designed to minimize unphysical parameter estimates. The numerical algorithm then takes the form of a quadratic programming problem. The principal change required to adapt the conventional DKI fitting algorithm to DP-DKI is replacing the three-dimensional diffusion and kurtosis tensors with the 6D tensors needed for DP-DKI. In this way, the 6D diffusion and kurtosis tensors for DP-DKI can be conveniently estimated from DDE data by using constrained WLS, providing a practical means for condensing DDE measurements into well-defined mathematical constructs that may be useful for interpreting and applying DDE MRI. Data from healthy volunteers for brain are used to demonstrate the DP-DKI tensor estimation algorithm. In particular, representative parametric maps of selected tensor-derived rotational invariants are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.