Abstract

Motor Imagery (MI) is a typical paradigm for Brain-Computer Interface (BCI) system. In this paper, we propose a new framework by introducing a tensor-based feature representation of the data and also utilizing a convolutional neural network (CNN) architecture for performing classification of MI-EEG signal. The tensor-based representation that includes the structural information in multi-channel time-varying EEG spectrum is generated from tensor discriminant analysis (TDA), and CNN is designed and optimized accordingly for this representation. Compared with CSP+SVM (the conventional framework which is the most successful in MI-based BCI) in the applications to the BCI competition III-IVa dataset, the proposed framework has the following advantages: (1) the most discriminant patterns can be obtained by applying optimum selection of spatial-spectral-temporal subspace for each subject; (2) the corresponding CNN can take full advantage of tensor-based representation and identify discriminative characteristics robustly. The results demonstrate that our framework can further improve classification performance and has great potential for the practical application of BCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.