Abstract
Tensor-based spatial smoothing (TB-SS) is a preprocessing technique for subspace-based parameter estimation of damped and undamped harmonics. In TB-SS, multichannel data is packed into a measurement tensor. We propose a tensor-based signal subspace estimation scheme that exploits the multidimensional invariance property exhibited by the highly structured measurement tensor. In the presence of noise, a tensor-based subspace estimate obtained via TB-SS is a better estimate of the desired signal subspace than the subspace estimate obtained by, for example, the singular value decomposition of a spatially smoothed matrix or a multilinear algebra approach reported in the literature. Thus, TB-SS in conjunction with subspace-based parameter estimation schemes performs significantly better than subspace-based parameter estimation algorithms applied to the existing matrix-based subspace estimate. Another advantage of TB-SS over the conventional SS is that TB-SS is insensitive to changes in the number of samples per subarray provided that the number of subarrays is greater than the number of harmonics. In this paper, we present, as an example, TB-SS in conjunction with ESPRIT-type algorithms for the parameter estimation of one-dimensional (1-D) damped and undamped harmonics. A closed form expression of the stochastic Crame?r-Rao bound (CRB) for the 1-D damped harmonic retrieval problem is also derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.