Abstract

The temperature stress in mass concrete structure is relatively high during construction, which usually leads to temperature cracks. To solve this problem, concrete blocks are usually placed by setting wide slots. Connecting the truncated steel bars at the position of the wide slots by welding or extruding sleeves has many disadvantages. To solve the problem of temperature-induced stress loss, a new type of slightly curved arc HRB400 (SCAHRB400) steel bars was proposed without cutting off the steel bars in this article. Tensile tests and numerical simulations were performed for five types of SCAHRB400 steel bars considering geometric and material nonlinearity. Based on the test results and numerical simulation results, the equivalent stress–strain relationships of SCAHRB400 steel bars were established, and the emergence of the plastic zone of SCAHRB400 steel bars in the tensile process were observed, the tensile properties of SCAHRB400 steel bars were analyzed and discussed. The test results indicate that SCAHRB400 steel bars are prone to local yielding near the crown of large arches and at the connection of horizontal and arc sections. The numerical simulation equivalent stress–strain curves have good regularity. The equivalent stress–strain curves of slightly curved arc HRB400 and HRB335 steel bars have the similar changing law. When the stress is small, the tensile stiffness and compressive axial stiffness of slightly curved arc HRB400 and HRB335 steel bars are similar; when the stress is large, the axial stiffness of SCAHRB400 steel bars is greater than that of slight curved arc HRB335 steel bars. Through test and numerical simulation studies, the theoretical basis can be established for the engineering application of new slightly curved arc steel bars in mass concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.