Abstract

The influence of direct current interference on the corrosion behavior of HRB400 and HRB400M steel bars in simulated concrete solution was studied using methods such as weight loss experiment, electrochemical experiment, surface technology and product analysis. The research results showed that with the increase of DC interference voltage, the corrosion rates of HRB400 and HRB400M steel bars would increase. The corrosion resistance of HRB400M steel bars was better than HRB400 steel bars under the experimental conditions. In addition, direct current interference could cause damage to the corrosion product layer on the surface of HRB400 steel bars and HRB400M steel bars. And the corrosion form and corrosion product types of HRB400 and HRB400M steel bars would be affected by direct current interference. The main corrosion products of HRB400 steel bars included γ-FeOOH and Fe2O3 when it was not interfered by DC. When DC interference was applied, the main corrosion products included Fe3O4 and Fe2O3. The corrosion products on the surface of HRB400M steel bars were mainly Fe3O4 and Fe2O3, and the types of products increased to form Cr2O3 and MnFe2O4.

Highlights

  • The influence of direct current interference on the corrosion behavior of HRB400 and HRB400M steel bars in simulated concrete solution was studied using methods such as weight loss experiment, electrochemical experiment, surface technology and product analysis

  • The results showed that the AC stray current depolarized the metal corrosion reaction by promoting the oxygen diffusion process, and this promotion effect was strengthened with the increase of the stray current intensity

  • When HRB400 steel bars were not interfered by direct current as shown in Fig. 8b, the corrosion products was mainly γ-FeOOH

Read more

Summary

Introduction

The influence of direct current interference on the corrosion behavior of HRB400 and HRB400M steel bars in simulated concrete solution was studied using methods such as weight loss experiment, electrochemical experiment, surface technology and product analysis.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.