Abstract

The effect of fire on the tensile properties of carbon fibres is experimentally determined to provide new insights into the tensile performance of carbon fibre–polymer composite materials during fire. Structural tests on carbon–epoxy laminate reveal that thermally-activated weakening of the fibre reinforcement is the dominant softening process which leads to failure in the event of a fire. This process is experimentally investigated by determining the reduction to the tensile properties and identifying the softening mechanism of T700 carbon fibre following exposure to simulated fires of different temperatures (up to 700°C) and atmospheres (air and inert). The fibre modulus decreases with increasing temperature (above ∼500°C) in air, which is attributed to oxidation of the higher stiffness layer in the near-surface fibre region. The fibre modulus is not affected when heated in an inert (nitrogen) atmosphere due to the absence of surface oxidation, revealing that the stiffness loss of carbon fibre composites in fire is sensitive to the oxygen content. The tensile strength of carbon fibre is reduced by nearly 50% following exposure to temperatures over the range 400–700°C in an air or inert atmosphere. Unlike the fibre modulus, the reduction in fibre strength is insensitive to the oxygen content of the atmosphere during fire. The reduction in strength is possibly attributable to very small (under ∼100nm) flaws and removal of the sizing caused by high temperature exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.