Abstract
This paper investigates the tensile properties of jute-reinforced composites fabricated using stereolithography (SLA) 3D printing. Tensile tests were conducted using dog-bone tensile specimens following ASTM D638 Type IV specifications. Additionally, the study explores the effect of layer thickness on the tensile properties of the 3D-printed composite material, examining four different layer thicknesses: 0.025 mm, 0.05 mm, 0.075 mm, and 0.1 mm. The findings revealed that the tensile strength of the 3D-printed jute-reinforced composites increased with the printing layer thickness, reaching its maximum at a layer thickness of 0.1 mm. This represents an enhancement of approximately 84% compared to pure resin. Examination of the fiber–matrix interface under an optical microscope revealed a wavy pattern, suggesting that the interface may act as a mechanical interlock under tensile loads, thereby significantly enhancing tensile strength. The strength of the 3D-printed jute-reinforced composites was found to be comparable to that of glass fiber mat epoxy composites. This demonstrates that 3D SLA-printed jute-reinforced composites offer a promising avenue for producing next-generation composites that are typically challenging to manufacture using traditional fabrication techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have