Abstract
AbstractThe tensile behavior of blends of linear polyethylene (PE) and isotactic polypropylene (PP) was examined in relation to their morphology. Yield stress increases monotonically with increasing PP content, while true ultimate strength is much lower in all blends than in the pure polymers as a result of early fracture. The blends fail at low elongation because of their two‐phase structure, consisting of interpenetrating networks or of islands of PE in a PP matrix, as shown by scanning electron microscopy of fracture surfaces and transmission electron microscopy of thin films. While spherulites in PP are very large (∼100 μm in diameter), addition of 10% or more of PE drastically reduces their average size. This, together with the profusion of intercrystalline links introduced by PE, may be associated with maximization of tensile modulus in blends containing ∼80% PP. Introduction of special nucleating agents to PP reduces average spherulite size and is accompanied by slight improvements in modulus. Thin films of blends strained in the electron microscope neck and fibrillate in their PE regions, but fracture cleanly with little fibrillation in areas of PP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.