Abstract

AbstractThe structure‐property relationship as well as the failure phenomena of injection molded polypropylene (PP) blends modified with ethylene/propylene/diene terpolymer (EPDM) and thermoplastic polyolefinic rubber (TPO) were investigated. Single and double‐gated tensile bars were injection molded by different Injection speeds. Microscopic studies on the failure behavior of knit lines were carried out using microtomed sections taken from the doublegated specimens. It was found that during injection molding, a skin‐core morphology is formed in both the continuous PP matrix as well as in the modified PP blends containing rubber particles of various deformation. The characteristics of the latter are in agreement with those described by the Tadmor flow model. The skin consists of a thin pure PP layer, whereas the subsurface layer contains more or less elongated rubbery particles due to the elongational flow at the wall. The deformation of the rubbery particles decreases, but their concentration increases with increasing distance from the skin towards the core. The deformed particles are oriented tengentionally to the flow front profile. Failure during tensile and tensile impact loading is initiated in the shear zone along the skin‐core boundary. This zone has a transcrystalline character and favors the formation of crazing. Final fracture of the bars depends, however, on how crazing and shear yielding simultaneously interact. Their interaction is a function of the average particle size of the dispersed phase. Above an average particle size of 0.6 μm, crazing is prevented by shear bands. For injection molding of PP/rubber blends a moderate injection speed is recommended, if the melt viscosities of the components are closely matched. In this way a pronounced dispersion gradient of the rubber particles across the plaque thickness is avoided. However, for the blends modified with rubber of high viscosity ratio and greater melt elasticity, use of higher injection speed is advantageous. Here, the higher shear stress field decreases the average particle size taken into the direction perpen dicular to the lead, since the cross section of the stronger deformed particle decreases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.