Abstract
The objective of this study is to improve the mechanical properties by careful control of both microstructure and alloy additions in two-phase TiAl alloys based on Ti-47Al-2Cr-2Nb (at%). Hot extrusion at temperatures above Tα produces refined lamellar structures, whose microstructural features can be further controlled by subsequent heat-treatment at and above 900 °C. The mechanical properties of the alloys with lamellar structures depend on three factors: colony size, interlamellar spacing, and alloying additions. The tensile elongation at room temperature is strongly dependent on lamellar colony size, showing increasing ductility with decreased colony size. The strength at room and elevated temperatures is sensitive to interlamellar spacing, showing increasing strength with decreased colony spacing. The fracture toughness at room temperature can be substantially improved by heat-treatment at 1320 and 1350 °C. The tungsten addition at a level of 0.2% improves the tensile strength, whereas the silicon addition at a level of 0.3% reduces the castability of the TiAl alloys. The TiAl materials produced by hot extrusion are much superior to those produced by conventional thermomechanical treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.