Abstract

Strain-Hardening Cementitious Composites (SHCC) have demonstrated superior mechanical performance, which could potentially solve the challenges of adding reinforcement in 3D-printed concrete structures. This study investigates the tensile performance of 3D-printed SHCC. Preliminary studies are conducted to investigate the effects of nanoclay dosage, fiber content and nozzle size on 3D printability and tensile performance. Further, experimental and theoretical studies of various printing patterns on the tensile performance and cracking control ability of 3D-printed SHCC are conducted. In addition, a quantitative analysis of the anisotropy of SHCC is conducted. Results indicate that the tensile properties of 3D-printed SHCC can be controlled by designing the printing pattern. Properly designed printed SHCC can exhibit better performance over mold-cast SHCC. These findings provide new insights into the design and manufacture of 3D-printed structures using fiber-reinforced cementitious materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call