Abstract
The layer interface, which is vital for the performance and longevity of 3D printed cement-based materials (3DPCM), is very sensitive to the environmental conditions because of the lack of formwork. Nevertheless, the current limited understanding of how temperature affects the layer interface has restricted the application of 3D printing in different construction scenarios. Here, we revealed the effects of temperature on the multi-scale phase distribution features of the layer interface through mercury intrusion porosimetry, X-ray computed tomography, nanoindentation and scanning electron microscopy with energy dispersive spectroscopy techniques. Additionally, the interlayer bond strength of 3DPCM was evaluated via the splitting tensile test. Small amplitude oscillation, surface roughness and isothermal calorimetry measurements were employed for an in-depth analysis of the mechanisms. Results indicate that an increase in temperature post-printing reduces the discrepancies in aggregate volume fraction between the layer interface and bulk matrix due to the increasing structuration rate and the amount of cement paste at the interface due to the reduced settlement of aggregates. The porosity difference between the layer interface and bulk matrix decreased with increasing temperature due to the pore size refinement by faster filling with hydrates. In addition, a more concentrated distribution of atomic ratios and elastic modulus of hydrates were observed at the layer interface of 3DPCM hardened at higher temperatures. Increased curing temperature improves the interlayer bond strength of 3DPCM owing to the enhanced aggregate interlocking, reduced porosity and improved high-density CSH content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.