Abstract

The tensile fracture behavior for solid-state-annealed eutectic SnPb and lead-free solder flip chip bumps was examined. The annealing temperatures were in the range of 125–170 °C for 500 h. Prior to solid state annealing, the eutectic Sn–37Pb (SnPb) and Sn–0.7Cu (SnCu) solders showed fracture through the bulk solder. Brittle interfacial fracture occurred in the Sn–3.5Ag (SnAg) solder. After solid-state annealing, the fracture behavior changed dramatically. For eutectic SnPb solder, the fracture modes gradually changed from cohesive solder failure to interfacial fracture with increasing annealing temperature. The fracture mode of the SnCu solder showed greater change than the SnPb and SnCu solders. After annealing at 125 °C, the SnAg solder had a ductile taffy pull fracture, but an increase in temperature resulted in brittle interfacial fracture again. The SnCu solder maintained the same ductile taffy pull mode up to170 °C annealing, independent of the under bump metallization (UBM) type. Microstructure analysis showed that the interfacial fracture of the SnPb and SnAg solder bumps was ascribed to Pb-rich layer formation and Ag embrittlement at the interface, respectively. The bulk solder fracture of SnAg annealed at 125 °C appeared to be a transient phenomenon due to the abrupt breakdown of the hard lamella structure. The eutectic SnCu solder bumps had no significant change in the interfacial structure, except for interfacial intermetallic growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call