Abstract
In this study, pure titanium equivalent to Grade 1 was subjected to tensile tests at strain rates ranging from 10-6 to 100 s-1 to investigate the relationship between its mechanical properties and its twinning and slip. Deformation properties and microstructures of samples having average grain sizes of 210 μm (Ti-210), 30 μm (Ti-30), and 5 μm (Ti-5) were evaluated. With increasing strain rates, the 0.2% proof stress and ultimate tensile strength increased for all samples; the fracture strain increased for Ti-210, decreased for Ti-5, and changed negligibly for Ti-30. Comparing high (100 s-1) and low (10-6 s-1) strain rates, twinning occurred more frequently in Ti-30 and Ti-210 at high strain rates, but the frequency did not change in Ti-5. The frequency of 1st order pyramidal slip tended to be higher in Ti-30 and Ti-5 at low strain rates. The higher ductility exhibited by Ti-210 at high strain rates was attributed to the high frequency of twinning. In contrast, the higher ductility of Ti-5 at low strain rates was attributed to the activity of the 1st order pyramidal slip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.