Abstract
The hot deformation behavior and constitutive relationship of Armco-type pure iron were investigated using isothermal compression tests with a wide range of temperature and strain rate ranging from 923 to 1523K, and 0.1 to 10s−1, respectively. When deformed with a single phase, the flow stress of Armco-type pure iron increases accompanied by the increase of strain rate and the decrease of deformation temperature. Instability phenomenon of Armco-type pure iron appears when deformed with dual phase. γ-Fe undergoes completed discontinuous dynamic recrystallization (dDRX) at all hot deformation conditions. α-Fe undergoes uncompleted dDRX process at high temperature and low strain rate, however, dynamic recovery (DRV) process is the main restoration process for α-Fe at low temperature and high strain rate. The modified Arrhenius-type constitutive equation considering strain compensation is used to describe the flow stress of γ-Fe and α-Fe. From correlation coefficient (R), root mean square error (RMSE) and average absolute relative error (AARE), the predictability of the constitutive equation for the two phases of Armco-type pure iron was evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.