Abstract

Tensile creep and creep rupture behaviors of alumina/17 vol% silicon carbide nanocomposite and monolithic alumina Were investigated at 1200° to 1300°C and at 50 to 150 MPa. Compared to the monolithic alumina, the nanocomposite exhibited excellent creep resistance. The minimum creep rate of the nanocomposite was about three orders of magnitude lower and the creep life was 10 times longer than those of the monolith. The nanocomposite demonstrated transient creep until failure, while accelerated creep was observed in the monolith. It was revealed that rotating and plunging of intergranular silicon carbide nanoparticles into the alumina matrix increased the creep resistance with grain boundary sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call