Abstract

The tensile behavior of single crystalline GaN nanotube bundles was studied using classical molecular dynamics. Stillinger–Weber potential was used to describe the atom–atom interactions. The GaN bundles consisted of several individual GaN nanotubes with {100} side planes. The simulation results show that the nanotube bundles show a brittle to ductile transition (BDT) by changing the temperatures. The fracture of GaN nanotube bundles is ruled by a thermal activated process, higher temperature will lead to the decrease of the critical stress. At high temperatures the individual nanotube in the bundles interact with each other, which induces the increase of the critical stress of bundles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call