Abstract

Ceramic matrix composites (CMCs) exhibit quasi-ductile behavior beyond the initial elastic region driven by a weak fiber-matrix interface that can be further engineered by introducing a finite thickness interphaseleading to enhanced strength and toughness. The current work explores the engineering of interphases in CMCs by a controlled variation of fabrication process parameters. C/BN/SiC minicomposite configurations have been fabricated by chemical vapor infiltration (CVI) with the intent of varying interphase thickness and constituent volume fractions by varying the interphase and matrix infiltration durations. The effect of processing durations on the resulting microstructure, tensile response, and damage mechanisms up to and during ultimate failure of CMC minicomposites have been investigated. The presented results highlight the significant influence of processing duration on the tensile and failure behavior of CMC minicomposites thereby providing an insight into the processing-microstructure-tensile response relationship in CMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.