Abstract

Zr705 has been evaluated for its metallurgical and corrosion properties for application in nuclear hydrogen generation using a thermochemical process that involves the decomposition of hydroiodic acid at temperatures up to 400 °C. The results indicate that the tensile strength was gradually reduced with increasing temperature. However, the failure strain was enhanced up to a critical temperature (200 °C) followed by its reduction beyond it, possibly due to the dynamic strain aging effect. As to the cracking susceptibility in an acidic solution, no failure was observed under constant-load and self-loaded conditions. However, enhanced ductility was observed in slow-strain-rate (SSR) testing in an identical environment at elevated temperatures. The application of external potential during SSR testing enhanced the cracking susceptibility. The critical potentials obtained in the electrochemical polarization study became more active with increasing temperature. Ductile failures, characterized by dimples, were noted in all failed specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.