Abstract

Significant efforts are in progress to identify and characterize the tensile properties of structural materials for application in hydrogen generation using a thermochemical process known as the sulfur-iodine cycle. Austenitic Alloy-22 has been evaluated for its tensile properties at temperatures ranging from ambient to 1000°C. As expected, the tensile strength was gradually decreased with increasing temperature due to the ease of plastic deformation at these temperatures. However, the failure strain gradually decreased from room temperature to 600°C, possibly due to the occurrence of a phenomenon known as dynamic strain aging. Transmission electron microscopy revealed maximum dislocation density at 600°C. Fractographic evaluation of the tested specimens by scanning electron microscopy showed dimpled microstructures at the primary fracture surface indicating ductile failures. However, at higher temperatures intergranular brittle failures were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.