Abstract

Heterotopic mineralization may result in tendon weakness, but effects on other biomechanical responses have not been reported. We used a needle injury, which accelerates spontaneous mineralization of murine Achilles tendons, to test two hypotheses: that injured tendons would demonstrate altered biomechanical responses; and that unilateral injury would accelerate mineralization bilaterally. Mice underwent left hind (LH) injury (I; n = 11) and were euthanized after 20 weeks along with non-injured controls (C; n = 9). All hind limbs were examined by micro computed tomography followed by biomechanical testing (I = 7 and C = 6). No differences were found in the biomechanical responses of injured tendons compared with controls. However, the right hind (RH) tendons contralateral to the LH injury exhibited greater static creep strain and total creep strain compared with those LH tendons (p ≤ 0.045) and RH tendons from controls (p ≤ 0.043). RH limb lesions of injured mice were three times larger compared with controls (p = 0.030). Therefore, despite extensive mineralization, changes to the responses we measured were limited or absent 20 weeks postinjury. These results also suggest that bilateral occurrence should be considered where tendon mineralization is identified clinically. This experimental system may be useful to study the mechanisms of bilateral new bone formation in tendinopathy and other conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call