Abstract
Compliance in jumping robots improves gait stability and enables energy‐efficient locomotion. Here, 3D printable auxetic tubular springs from thermoplastic polyurethane (TPU) for rapid and sustainable hopping are developed. Because the springs have negative Poisson's ratios, they become stiffer as compression proceeds and theoretically stores 35.2% more energy than a linear spring with the same stiffness. As the stress concentrates on the hinges, it is revealed through experimental, numerical, and analytical investigations that hinge geometries, for example, the lattice angle and hinge radius, governs the global stiffness and robustness of the springs. The hopping robot leg composed of three auxetic tubular springs in parallel sustains more than 1,000 cycles of repeated, one‐degree‐of‐freedom (1‐DOF) vertical hopping and two‐degree‐of‐freedom (2‐DOF) forward hopping. The 2.5 kg‐robot system requires minimum 420 mJ of elastic energy for repeated hopping. The springs are pre‐compressed by tendon‐driven actuators and stores 1.08 J during jumping and release the springs when touching the ground. The power stroke is calculated as 15–18 W. The average velocity of the hopping robot reaches 0.06 m s−1 with the increase of touchdown angle to 0.125 rad. The cost of transport is calculated as 6.7, similar to those of the living organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.