Abstract
Fibronectin (Fn) and tenascin (Tn) are two major extracellular matrix (ECM) glycoproteins that may have important roles both in fibrotic lung diseases and in lung tumors. The significance of Fn and Tn in human pleural mesothelial cells and pleural diseases is unclear. Transformed human pleural mesothelial cells (Met5A), primary cultures of mesothelial cells, and cultured mesothelioma cell lines were investigated for Fn and Tn immunoreactivity. Mesothelial cells were exposed for 48 to 96 h to transforming growth factor-beta (TGF-beta), tumor necrosis factor-alpha (TNF-alpha), amosite asbestos fibers, or oxidants (H2O2 and menadione, a compound that auto-oxidizes to produce superoxide). Immunofluorescence and Western blotting with monoclonal anti-Fn and anti-Tn antibodies, and Northern blotting with a complementary DNA (cDNA) probe for Tn showed that mesothelial cells are capable of producing Fn and Tn. The mRNA level and immunoreactivity of Tn was enhanced by TGF-beta and TNF-alpha, whereas Fn was intensified only by TGF-beta. A wide range of amosite, H2O2, or menadione concentrations had no clear effect on Fn or Tn reactivity. Fn and Tn were present at low or undetectable concentrations in five of six mesothelioma cell lines, whereas the organization of Fn immunoreactivity in these cell lines was variable. Furthermore, results obtained with the tumor tissue of these same mesothelioma patients suggested that Fn and Tn expressions do not necessarily parallel either each other or results obtained with the cultured cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have