Abstract

Animals and human infants discriminate numerosities in visual sets. Experiments on visual numerical judgments generally contrast sets in which number varies (e.g., the discrimination between 2 and 3). What is less investigated, however, is set density, or rather, the inter-stimulus distance between the entities being enumerated in a set. In this study, we investigated the role of set density in visual sets by 10-month-old infants. In Experiment 1, infants were offered a choice between two sets each containing four items of the exact same size varying in the distance in between the items (ratio 1:4). Infants selected the set in which the items are close together (higher density). Experiment 2 addressed the possibility that this choice was driven by a strategy to “select all in one go” by reducing the size and distance of items. Ten-month-olds selected the sets with higher density (less inter-stimulus distance) in both experiments. These results, although bearing replication because of their originality, seem consistent with principles in Optimal Foraging in animals. They provide evidence that a comparable rudimentary capacity for density assessment (of food items) exists in infants, and may work in concert with their numerical representations.

Highlights

  • From neonates and pre-crawling babies, to toddlers and preschoolers, research indicates that numerical representations may be found early in development

  • Several studies have used stimuli in a more “abstract” format to show that infant numerical abilities cannot be explained solely on the basis of a perceptual mechanism, researchers do not unanimously agree that these results may be indicative of a rudimentary form of numerical representations

  • The results of this experiment indicate that 10-month-old infants preferred to select the more dense set of four items

Read more

Summary

Introduction

From neonates and pre-crawling babies, to toddlers and preschoolers, research indicates that numerical representations may be found early in development. While some researchers reach consensus that numerical understanding exists early in infancy, perhaps even innately (Uller et al, 1999; Feigenson et al, 2004; Cordes et al, 2007; Spelke and Kinzler, 2007; Cordes and Brannon, 2008; Uller, 2008), others prefer to claim that most numerical representations in children develop as a function of learning (e.g., Piaget, 1952) Another point of contention regards the nature of these abilities. These findings show that infants are able to represent small sets, but are able to discriminate large sets, an ability which requires, at a very minimum, a representation of amount

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.