Abstract
Single-domain antibodies (sdAbs) or nanobodies have received widespread attention due to their small size (~ 15 kDa) and diverse applications in bio-derived therapeutics. As many modern biotechnology breakthroughs are applied to antibody engineering and design, nanobody thermostability or melting temperature (Tm) is crucial for their successful utilization. In this study, we present TEMPRO which is a predictive modeling approach for estimating the Tm of nanobodies using computational methods. Our methodology integrates various nanobody biophysical features to include Evolutionary Scale Modeling (ESM) embeddings, NetSurfP3 structural predictions, pLDDT scores per sdAb region from AlphaFold2, and each sequence’s physicochemical characteristics. This approach is validated with our combined dataset containing 567 unique sequences with corresponding experimental Tm values from a manually curated internal data and a recently published nanobody database, NbThermo. Our results indicate the efficacy of protein embeddings in reliably predicting the Tm of sdAbs with mean absolute error (MAE) of 4.03 °C and root mean squared error (RMSE) of 5.66 °C, thus offering a valuable tool for the optimization of nanobodies for various biomedical and therapeutic applications. Moreover, we have validated the models’ performance using experimentally determined Tms from nanobodies not found in NbThermo. This predictive model not only enhances nanobody thermostability prediction, but also provides a useful perspective of using embeddings as a tool for facilitating a broader applicability of downstream protein analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.