Abstract

This letter proposes a new robust data-driven sparse voltage sensitivity estimation approach for large-scale distribution systems with PVs. It has a high statistical efficiency to mitigate the impacts of PV stochasticity and unknown measurement noise under various system operating conditions. A new adaptively-weighted <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> sparsity-promoting regularization is developed, exploiting the temporal characteristic of time-varying sensitivities for better accuracy. The <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">l</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> regularization is used to mitigate collinearity impacts. The Huber loss function and a concomitant scale estimate are adopted to mitigate the impacts of unknown and non-Gaussian noise. These techniques are implemented in a fast recursive parallel computing framework. The proposed estimator is tested by quasi-static time series simulations of a large three-phase unbalanced system with PVs and various discrete time-delayed control devices. Results validate the superior robustness and efficiency of the proposed estimator over existing alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.