Abstract

Density dependence and, therefore, K (carrying capacity, equilibrium population size) are central to understanding and predicting changes in population size (N). Although resource levels certainly fluctuate, K has almost always been treated as constant in both theoretical and empirical studies. We quantified temporal variation in K by fitting extensions of standard population dynamic models to 16 annual censuses of a population of the perennial bunchgrass Bouteloua rigidiseta. Variable-K models provided substantially better fits to the data than did models that varied the potential rate of population increase. The distribution of estimated values of K was skewed, with a long right tail (i.e., a few "jackpot" years). The population did not track K closely. Relatively slow responses to changes in K combined with large, rapid changes in K sometimes caused N to be far from K. In 13%-20% of annual intervals, K was so much larger than N that the population's dynamics were best described by geometric growth and the population was, in effect, unregulated. Explicitly incorporating temporal variation in K substantially improved the realism of models with little increase in model complexity and provided novel information about this population's dynamics. Similar methods would be applicable to many other data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.