Abstract
Although the impact of climate warming on streamflow in general and on floods in particular is a much-debated topic (e.g. Koutsoyiannis et al., 2008; Kundzewicz et al., 2008; Raisanen, 2007; Sun et al., 2007), there is general agreement about the geographical variability of these changes. In Quebec, a region characterized by a temperate, continentaland maritime-type climate, a consensus is forming in light of results of climate and hydrological modeling regarding the effects of climate warming on flood magnitude. These effects will depend on the season and the underlying cause of floods. Thus, whereas climate and hydrological models predict a decrease in the magnitude of spring floods resulting from snowmelt (freshets) due to a decrease in the amount of snow falling in winter, they also predict an increase in the magnitude of rain-induced floods as a result of increasing rainfall intensity during summer and fall. Thus, Roy et al. (2001) predicted a significant increase in the intensity of heavy precipitation (20 and 100-year recurrence intervals) which will result in a much greater increase in the magnitude of summer floods. In the Châteauguay River, for instance, peak flow for a flood induced by a 20-year rainfall event will double or triple, depending on initial soil moisture conditions, by the end of the century. However, according to Zhang et al. (2000), no significant increase in rainfall intensity has been observed in Quebec or Canada over the past century, which would explain the absence of any significant change in the interannual variability of the magnitude of rain-induced floods observed in many regions of Canada (Cunderlik & Ouarda, 2009). While Assani et al. (2011) have shown that the amount of rainfall from August to November has significantly increased in southeastern Quebec, south of parallel 46oN on the South Shore of the St. Lawrence River, no study has looked at the impact of this increase in rainfall on the interannual variability of rain-induced floods. Analysis of the interannual variability of snowmelt-induced spring floods (spring freshets) has revealed no generalized significant decrease in their magnitude (Assani et al., 2010), despite a recorded increase in temperature since the 1970’s in Quebec. On the contrary, a significant increase in the magnitude of spring floods on the North Shore of the St. Lawrence is recorded from 1934 to 2000, which is thought to result from the continental nature of climate in this region rather than from increasing temperature. Assani et al. (2010) have also shown that the interannual variability of snowmelt-induced spring floods is significantly correlated with the AMO climate index on the North Shore, and with the SOI and AO climate indices on the South Shore, north and south of parallel 47oN, respectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have