Abstract

This study examines the seasonal and annual variability of black carbon (BC) and particular matter (PM1, 2.5, and 10) over Greater Cairo (Egypt) from 2003 to 2020. Data on PM and BC concentrations were gathered from the European Center for Medium-Range Weather Forecasts (ECWMF) reanalysis dataset. The Observed data from Abbasiya Station were employed to verify the accuracy of the reanalysis data, and a good agreement on both seasonal and annual scales was suggested. The results demonstrate that the highest concentrations of PM and BC were generally witnessed during wintertime, while the lowest was observed in summer. Trend analysis showed that, apart from fall, a significant increase (p < 0.05) in PM levels was evident in all seasons from 2003 to 2020. Contrarily, BC concentrations exhibited a statistically significant decline from 2003 to 2020. Moreover, BC concentrations correlated negatively with PM (1, 2.5 and 10) in all seasons and annually. However, weak and statistically non-significant (p > 0.05) correlations were found between PM and BC concentrations during wintertime. Additionally, this study looked at the atmospheric configurations corresponding to the most anomalous positive and negative phases of air pollution concentrations over Greater Cairo. The results indicate that the increase in PM concentrations is related to the positive anomalies observed at 250 hPa, which suggest a prevalence of stable atmospheric conditions, particularly during winter. Overall, our findings can serve as a foundation for improved urban planning and more effective strategies to lessen the negative effects of air quality in the largest megacity in Africa and the Middle East.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call