Abstract

Submarine groundwater discharges (SGDs) are an important source of freshwater as well as nutrients and other chemicals to bays and estuaries. SGDs are particularly important for coastal bodies in arid and semi-arid regions that are not fed by perennial streams. The Baffin Bay, TX is a shallow coastal water body that is weakly connected to the Gulf of Mexico and has no major rivers or streams draining into it. A year-long submarine groundwater discharge measurement study was carried out at the Loyola Beach of the Baffin Bay during the months of July 2005–June 2006. A total of 23 synoptic SGD sampling events were carried out with most events collecting SGD data continuously over a period of 24 h at a 1-min temporal resolution using an ultrasonic seepage meter. The median SGD was noted to be 3.83 cm/d with an inter-quartile range (IQR) of 11.36 cm/d. Four sampling events had anomalously high SGD values (~27–48 cm/d) which are hypothesized to be due to the geologic heterogeneity of the sea bed and meteorological effects. Eight of the 23 sampling events had a negative average SGD flux indicating landward flow. The short-term diurnal variability of SGD was comparable or sometimes higher than the longer-term and between-events variability. No long-term trend could be inferred. In the short-term, SGD measurements showed considerable persistence and the effective sample size analysis indicated each sampling event (consisting of over 1,000 samples) yielded only a handful of statistically independent measurements of SGD. The measured SGD values exhibited both negative (hydraulically controlled) and positive (wave set-up controlled) correlations with the bay water levels. Marine controls appeared to be the most significant SGD drivers and are in turn controlled by prevailing aeolian forcings. The salinity of the SGDs were estimated from measured sonic velocities and used in conjunction with the end-member mixing models to estimate fresh (meteoric) and re-circulated pore-water fractions. The freshwater fraction of the SGD was estimated to vary between nearly 4 and 89 % with a median value of 9.96 % and an IQR of 7.16 %. Three events were noted to have abnormally high freshwater fractions (~28, 50 and 84 %) which are likely artifacts caused by bay water freshening from rainfall and plausible thermal expansion. The meteoric and pore-water partitioning was sensitive to the assumed end-member concentrations. This study provides preliminary estimates for SGDs along the South Texas coast line and is useful for calibrating groundwater flow models and understanding the relative importance of terrestrial and marine controls on SGD. However, the heterogeneous nature of the sedimentary geology of the Texas Gulf Coast implies the SGD fluxes are likely to exhibit considerable spatial variation that has not been characterized yet. Therefore, the study provides useful insights for such future data collection and monitoring activities. The measured SGD values at Baffin Bay, TX are comparable to those reported at other parts of the Gulf of Mexico.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call