Abstract

AbstractIncreased soil erosion, pressure on agricultural land, and climate change highlight the need for new management methods to mitigate soil loss. Management strategies should utilize comparable data sets of long‐term soil erosion monitoring across multiple environments. Adaptive soil erosion management in regions with intense precipitation requires an understanding of inter‐annual variability in sediment yield (SY) at regional scales. Here, a novel approach is proposed for analysing regional SY. We aimed to (i) investigate factors controlling inter‐ and intra‐annual SY, (ii) combine seasonality and time compression analyses to explore SY variability and (iii) discuss management implications for different Mediterranean environments. Continuous SY measurements totalling 104 years for eight small catchments were used to describe SY variability, which ranged from 0 to 271 t/ha/year and 0 to 116 t/ha/month. Maximum SY occurs in spring to summer for catchments with oceanic climates, while semi‐arid or dry summer climates experience SY minimums. We identified three time compression patterns at each time scale. Time compression was most intense for catchments with minimum SY in spring to summer. Low time compression was linked to very high soil loss, low run‐off and sediment production thresholds, and high connectivity. Reforestation, grassland and terracing changed SY magnitudes and time compression, but failed to reduce SY for large storm events. Periods with a high probability of high SY were identified using a combination of intra‐annual SY variability, seasonality analysis, and time compression analysis. Focusing management practices on monthly flow events, which account for the majority of SY, will optimise returns in Mediterranean catchments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.