Abstract
The extent to which self-adopted or intervention-related changes in behaviors affect the course of epidemics remains a key issue for outbreak control. This study attempted to quantify the effect of such changes on the risk of infection in different settings, i.e., the community and hospitals. The 2002–2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong, where 27% of cases were healthcare workers, was used as an example. A stochastic compartmental SEIR (susceptible-exposed-infectious-removed) model was used: the population was split into healthcare workers, hospitalized people and general population. Super spreading events (SSEs) were taken into account in the model. The temporal evolutions of the daily effective contact rates in the community and hospitals were modeled with smooth functions. Data augmentation techniques and Markov chain Monte Carlo (MCMC) methods were applied to estimate SARS epidemiological parameters. In particular, estimates of daily reproduction numbers were provided for each subpopulation. The average duration of the SARS infectious period was estimated to be 9.3 days (±0.3 days). The model was able to disentangle the impact of the two SSEs from background transmission rates. The effective contact rates, which were estimated on a daily basis, decreased with time, reaching zero inside hospitals. This observation suggests that public health measures and possible changes in individual behaviors effectively reduced transmission, especially in hospitals. The temporal patterns of reproduction numbers were similar for healthcare workers and the general population, indicating that on average, an infectious healthcare worker did not infect more people than any other infectious person. We provide a general method to estimate time dependence of parameters in structured epidemic models, which enables investigation of the impact of control measures and behavioral changes in different settings.
Highlights
Emerging infectious diseases have been defined as, ‘‘infections that have newly appeared in a population or have existed previously but are rapidly increasing in incidence or geographic range. [1]’’ Several features may make them threatening
The 2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong is remarkably illustrative of the above issues: symptoms were similar to pneumonia [7]; the incubation period was long enough for local and international transmission to occur [8]; no vaccine or treatment was available; as much as 21% of cases worldwide were healthcare workers [9]
Recent epidemics have shown that healthcare workers may be overrepresented among cases and how critical it is to protect them
Summary
Emerging infectious diseases have been defined as, ‘‘infections that have newly appeared in a population or have existed previously but are rapidly increasing in incidence or geographic range. [1]’’ Several features may make them threatening. [1]’’ Several features may make them threatening. Heterogeneities in disease transmission may create high-risk groups, such as healthcare workers [2,3,4,5] and high-risk geographical areas, thereby dramatically enhancing the impact of the outbreak [6]. The 2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong is remarkably illustrative of the above issues: symptoms were similar to pneumonia [7]; the incubation period was long enough for local and international transmission to occur [8]; no vaccine or treatment was available; as much as 21% of cases worldwide were healthcare workers [9]. Despite its threatening features, the outbreak was brought under control
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have