Abstract

Arctic char (Salvelinus alpinus L.), the top predator in High Arctic lakes, often is used as a bioindicator of Hg contamination in Arctic aquatic ecosystems. The present study investigated effects of trophic position, size, and age of Arctic char in Lake Hazen, the largest lake in the Canadian High Arctic (81 degrees 50'N, 70 degrees 25'W), on Hg bioaccumulation. In addition, several essential (Se, K) and nonessential elements (Tl, Cs) in char muscle tissue were examined to compare their behavior to that of Hg. Trophic position of Arctic char was identified by stable isotope (delta15N) signature. Temporal trends of Hg from seven sampling campaigns over a 16-year period (1990-2006) were investigated for the overall data and for one trophic class. Concentrations of Hg were not correlated with age but were positively related to fork length and trophic position. Large char with greater delta15N signatures (> 12 per thousand) had larger Hg concentrations (0.09-1.63 microg/g wet wt) than small char with smaller delta15N signatures (< 12 per thousand, 0.03-0.32 microg/g wet wt), indicating that Hg concentrations increased with trophic position. Nonessential Cs and Tl showed relationships to age, length, and trophic position similar to those of Hg, indicating their potential to bioaccumulate and biomagnify. Essential Se and K did not show these relationships. Concentrations of Hg were adjusted using delta15N, leading to less within-year variability and a more consistent temporal trend. The delta15N-adjusted trend showed no decline of Hg in Arctic char from Lake Hazen (1990-2006) in the overall data set and in the small morphotype. Trends for the same period before the adjustment were not significant for the overall data set, but a slight decrease was apparent in the small morphotype. The results confirm the need to consider trophic position and fish size when monitoring temporal trends of Hg, particularly for species with different morphotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.