Abstract
ABSTRACT Most Caribbean islands do not have air pollution surveillance programs. Those who live in these countries are exposed to ambient air pollution from a variety of sources including motor vehicles, ocean-going vessels, and Saharan dust. We conducted an air sampling exposure study in Grenada to describe daily changes in fine particulate matter (PM2.5) pollution, and during Saharan dust episodes. Further, we assessed the impacts of COVID-19 public health interventions on PM2.5 concentrations in 2020. Four fixed-site PurpleAir monitors were installed throughout Grenada, and one on the neighboring island of Carriacou. PM2.5 was measured between January 6 and December 31, 2020. We classified each of these days based on whether COVID-19 public health mitigation measures were in place or not. Descriptive analyses were performed to characterize fluctuations in PM2.5, and we assessed the impacts of public health restrictions on PM2.5 using multivariate regression. The mean daily PM2.5 concentration in 2020 was 4.4 μg/m3. During the study period, the minimum daily PM2.5 concentration was 0.7 μg/m3, and the maximum was 20.4 μg/m3. Daily mean PM2.5 concentrations more than doubled on Saharan dust days (8.5 vs 3.6 μg/m3; p < 0.05). The daily mean PM2.5 concentrations were estimated to be 1.2 μg/m3 lower when COVID-19 restrictions were in effect. Ambient PM2.5 concentrations in Grenada are relatively low compared to other countries; however, Saharan dust episodes represent an important source of exposure. Low-cost sensors provide an opportunity to increase surveillance of air pollution in the Caribbean, however their value could be enhanced with the development of correction algorithms that more closely approximate values from reference-grade monitors. Implications: This study describes daily fluctuations in ambient PM2.5 concentrations in Grenada in 2020. Overall, concentrations of PM2.5 were low; however, we found that Saharan dust events cause daily exceedances in PM2.5 above the current 24-hr limits of the World Health Organization. Moreover, the constructed models suggest that public health interventions to reduce the spread of COVID-19 reduced PM2.5 concentrations by 27%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.