Abstract
The ability to perceive complex objects in the environment requires that the visual system integrate local form information into global shapes. Glass patterns (GPs) are stimuli that are commonly used to study this integration process. GPs consist of randomly positioned dot-pairs oriented in a coherent way to create a global form. When multiple GPs are presented sequentially, observers report a percept of illusory coherent motion and have lower detection thresholds relative to a single presentation GPs. The percept of illusory motion has been attributed to the visual system interpreting the dot-pairs in GPs as motion streaks. However, it remains unclear why dynamic GPs are detected at lower thresholds than static GPs. Two main differences exist between static and dynamic GPs: (a) dynamic GPs contain multiple presentations of global form signals compared to a single presentation in static GPs and (b) dynamic GPs have a greater temporal frequency than static GPs. Here we investigated which of these two factors contributed to the heightened sensitivities for dynamic GPs. We systematically varied the number of unique GPs and the rate at which each unique frame is presented (i.e., temporal frequency). The results show that, within the range of temporal frequency used, the primary influence on detection thresholds was the number of unique frames. These results suggest that the improved detection sensitivities can be driven by a mechanism of temporal summation of global form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.