Abstract
Temporal separation of red (R) and blue (B) (alternating R/B) photons has been reported to increase leaf area, photon capture, and yield of lettuce compared with delivering both colors together (concurrent R+B). We grew three diverse lettuce cultivars (Grand Rapids, Rex, and Red Sails) under concurrent R+B photons (9/1 ratio) and alternating R/B photons (9/1 ratio) under an equal daily light integral (DLI) of either 8.6 or 23 mol⋅m−2⋅d−1. Contrary to five previous studies, we found no increase in either leaf area or fresh mass and dry mass in any of the alternating R/B photon treatments compared with concurrent R+B photons. In fact, at a DLI at 8.6 mol⋅m−2⋅d−1, alternating R/B photons decreased the dry mass of ‘Grand Rapids’ and ‘Rex’ lettuce by 38% and 17%, respectively. Two previous studies reported that photosynthetic rates increased with alternating R/B photons; however, we found that the net assimilation rate was generally decreased by alternating R/B photons. An analysis of images obtained from automated digital photography revealed that the relative expansion rate of leaves was 61% higher during intervals of pure B rather than intervals of pure R photons at the same photosynthetic photon flux density; however, this did not result in a higher leaf area compared with concurrent R+B photons. Overall, our studies do not indicate that alternating R/B photons increase lettuce leaf area or yield compared with concurrent R+B photons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have