Abstract

Ultrafast compressive imaging captures three-dimensional spatiotemporal information of transient events in a single shot. When a single-chirped optical probe is applied, the temporal information is obtained from the probe modulated in amplitude or phase using a direct frequency-time mapping method. Here, we extend the analysis of the temporal resolution of conventional one-dimensional ultrafast measurement techniques such as spectral interferometry to that in three-dimensional ultrafast compressive imaging. In this way, both the amplitude and phase of the probe are necessary for a full Fourier transform method, which obtains temporal information with an improved resolution determined by probe spectral bandwidth. The improved temporal resolution potentially enables ultrafast compressive imaging with an effective imaging speed at the quadrillion-frames-per-second level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call