Abstract

Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2-D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased-array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits reliance on a much more effective wall filtering and increased sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis, and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call